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In the model of hole superconductivity the strength of the pairing interaction depends on the local carrier density. This gives
rise to a dependence of the gap function 4 on the band energy ¢,. Fluctuations in the local potential energy will result in different
values of 4, at the Fermi energy and hence in different values of the local energy gap. In particular, the energy gap can be sharply
reduced. We study this behavior by numerical solution of the Bogoliubov-de Gennes equations for the model. The behavior is
contrasted with what occurs in the attractive Hubbard model, where local potential fluctuations have negligible effect. The phys-
ical origin of this behavior and the possible relevance to high-T, oxides is discussed.

1. Introduction

Experimental estimates of the superconducting
energy gap in high-7. oxides have yielded a wide
spread in gap values [1]. Results vary between dif-
ferent techniques, such as infrared and tunneling, and
within the same technique depending on experimen-
tal conditions. Furthermore, the broadening of the
resistive transition in a field observed in high-7, ox-
ides [2] suggests the existence of a distribution of
gap values and the fact that critical currents are low
[3] suggests that there are regions in the supercon-
ductor with reduced order parameter.

In this paper we examine the effect of local po-
tential variations on the energy gap in the model of
hole superconductivity [4,5]. In this model the en-
ergy gap function 4, depends on the band energy ¢,.
It was suggested in ref. [4] that this would give rise
to high sensitivity to non-magnetic disorder. Re-
cently, Marsiglio [6] has studied the effect of non-
magnetic disorder on T in this model, and found that
T. can be strongly depressed. Here, we study the ef-
fect of local potential fluctuations on the local energy
gap (as measured in a tunneling experiment ), by nu-
merical solution of the Bogoliubov—de Gennes equa-
tions [7] for the model. We find that such fluctua-
tions can cause large variations in the local energy

gap, suggesting a possible explanation for the above-
mentioned observations.
2. Formalism

The Hamiltonian is given by [5]
H=-3% t%(cit ¢ +h.c.)

i,j,a
+2 Uing g + Y Vymn + 3 €y, (1a)
i ij 7
th=ty+ () y(ny o +n;_o). (1b)

Here, the operators describe holes in a d-dimen-
sional hypercubic lattice. For generality, we allow the
interactions U,, V;; as well as the site energy ¢; to de-
pend on position, although in the numerical calcu-
lations we will only consider variations in €. The
hopping #; as well as the hopping interaction (4¢);
are assumed to be constants 7, A7 between nearest-
neighbor sites, and zero otherwise.
We introduce the local expectation values

a;={CcycCyy, (2a)
by={cycy>, (2b)

and the local order parameters
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di=—Ua, + 3 (4t);(b; +by; ) (3a)
J
4y=(40)(a; +a,-)—V,yé‘l—;ﬁ, (30)

with 7, j nearest neighbor sites. The Bogoliubov-de
Gennes (BdG) equations for this model are ob-
tained in the usual way [7], by performing a mean-
field decoupling of the interactions in eq. (1) and a
Bogoliubov transformation to quasi-particle opera-
tors. This results in the matrix equations

E,u, =¢eu, —Av,, (4a)
Ev,=—eh—4%uw,, (4b)

for the quasi-particle energies E, and eigenvector
amplitudes u,, v,. Here,

(f)ij=(€i—,u) 6ij_tij; (5a)
(A)ly':Aij- (Sb)
1 is the chemical potential and the index # labels the
particular eigenvalue and eigenvector. We also im-
plicitly include the renormalization of the single-par-
ticle hopping ¢; due to the hopping interaction [5].
The only difference with the usual case [7] is that
the order parameter 4 has here off-diagonal matrix

" elements in addition to diagonal ones. The self-con-
sistency conditions are

4;=-U; z Uy U (1=21,)
+2(4t); Y (i v+ uy v3) (1-21,), (6a)

Aij= (At)ij z (Wt U:i+unjv:j) (1=2£)

ST Gt gt (1-2). (6b)

with f, the Fermi function for energy E,,.

In the absence of disorder (e;=0 for all i, U,, V;
constants) the eigenvector index n becomes the wav-
evector k and the solution of these equations takes
the form

U, =e Ky, (7a)
v,=e Ry, ' (7b)

Defining

A= z eik(Ri—R) 4 (8a)
J

and

G=— ) eR—Rog, (8b)

J

eq. (4) yields

U VE = (9a)

Lk
2E;°
Ep=/(&—p)*+4%; (9b)

and eq. (6) gives rise to the usual BCS equation [4].
The gap function is parametrized as

Aszm<lze”“’+c), (10a)
zZ3

where 6 runs over nearest neighbor sites, or
equivalently

€k
D)2 + c),
with D=2zt the bandwidth, with z the number of

nearest neighbors. For the local order parameters we
have

Aszm<— (10b)

di=4,c, (11a)
4y
dy= - (11b)

The minimum quasi-particle energy, the “energy
gap”, is [4]

EpPin =4, = ‘%, (12a)

2172
A
=(+(5))

and it occurs at the values of k where the band en-
ergy is

(12b)

C=pt P, (13)
as can be seen from minimization of eq. (9b). Fig-
ure 1 shows a typical example of the gap function
and quasi-particle energy plotted versus band energy.

That disorder in the site energies ¢; will have a large
effect on the energy gap in this model can be seen as
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Fig. 1. Gap function 4, and quasi-particle energy E; vs. band en-
ergy €, for a representative case. D=0.2 eV. Only the lower half
of the (hole) band is shown. The range of values of site energies
(A¢) that would cause the energy gap to vary between 0 and its
maximum value is indicated.

follows. Consider first a situation where €; varies
slowly over distances of the order of the coherence
length. In that case we would simply solve the usual
BCS equations with a constant ¢,=¢,(r) in each re-
gion r, to obtain the parameters 4,, and ¢ in eq. (10a).
The resulting critical temperature T, and energy gap
4, are a function of the (local) carrier density n(r)
[4]. which in turn depends on the site energy &(r);
for a constant density of states,

pte(r)

n(r)=1+ D/2

(14)
From eq. (14) we deduce that if T, is non-zero in a
range of hole densities from 0 to n,,,, the gap will
vary between zero and its maximum value in a range
of site energies

A€y 2 (15)
2

Instead, if ¢, varies over distances of the order of
the coherence length or shorter it becomes necessary
to solve the full BAG equations. However, to a first
approximation we may argue that the parameters 4,
and ¢ will be unaffected by very short-distance fluc-
tuations. The “local band energy” will be given by

&(r)=¢€.+e,(r) . (16)

and minimization of the quasi-particle energy

Ec (r)= /(&(r)—pu)*+ 4 (17)

leads to a local quasi-particle gap

Ag(,)zw. , (18)
a

Thus, the local gap can be read off from fig. 1 by sim-
ply shifting 1 along the horizontal axis a distance
€,(r). The range in site energies where the gap varies
between 0 and its maximum value is simply the re-
gion of the horizontal axis to the left of where the gap
function crosses zero in fig. 1, i.e.

Ae=§(1+c). (19)

Now the parameter ¢ is found to have a weak de-
pendence on carrier density [4], and at the point
where T goes to zero it can be found exactly as [8]

c==(1=Hpay) . (20)

Replacement of eq. (20) in eq. (19) yields a result
identical to eq. (15). Thus, a similar sensitivity of
the local energy gap to disorder is expected in both
regimes of slowly varying and rapidly varying fluc-
tuations with respect to the coherence length.

3. Numerical results

To study the effect of disorder on scales of the or-
der of or less than the coherence length we solve the
BdG equations numerically by an iterative Newton—
Raphson method. For computational reasons we re-
strict ourselves to a one-dimensional lattice of N=20
sites. We choose parameters so that the range of den-
sities where T, is non-zero is rather large, so that sev-
eral densities can be studied on the finite size lattice.
The parameters used were U=35 eV, Ar=0.25 A
V=0, 1=0.03 eV. They give rise to a maximum 7,
of 160 K and a range of hole densities where 7T, is
non-zero from n=0to n=1.1, as shown in fig. 2. Al-
though this is not realistic for the high-T, oxides, the
qualitative effects discussed here depend only on the
existence of a finite gap slope in the gap function.
Fig. 3 shows the energy gap function eq. (10) ob-
tained from solving the BCS equation, for four val-
ues of the chemical potential. These values were cho-
sen as the lowest ones that lie half-way between the
allowed kinetic energy values on the finite lattice
(€x= —2t cos k, with k an integer multiple of 21/N)
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Fig. 2. Critical temperature vs. hole concentration for the one-
dimensional model discussed in the text. U=5 eV, At=0.25 ¢V,
V=0,t=0.03 eV.
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Fig. 3. Gap function vs. band energy for 20 site chain discussed
in the text. The values of the chemical potential, indicated by the
dashed lines, are u= —t{cos(nr/10) +cos(n(r+1)/10],0<r<3.
The corresponding densities are given in the figure.

to minimize finite lattice effects. The values of the
hole density at the critical temperature are given in
the figure, below T, these values change by less than
5% down to T=0. (In the absence of superconduc-
tivity the hole densities would approach the values
n=0.1, 0.3, 0.5 and 0.7 for these values of the chem-
ical potential.)

Figures 4 and 5 show the minimum quasi-particle
energy obtained from numerical solution of eqs. (4)
— (6) for various hole densities. In fig. 4 we vary the
site energy €; on a single site, and in fig. 5 on two ad-
jacent sites. It can be seen that the energy gap is de-
pressed by site energy disorder, particularly when two
adjacent site energies are varied. The coherence
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Fig. 4. Effect of disorder on a single site on the minimum quasi-
particle energy E,, for the one-dimensional chain discussed in
the text. The abscissa gives the site energy of site zero, all other
sites have site energies ¢;=0. Parameters are given in the text.
The different curves correspond to different carrier densities
(numbers next to the curves).
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Fig. 5. Same as fig. 4 for disorder on two neighboring sites. Val-
ues of €,=¢, are given in the abscissa. Parameters are the same as
in fig. 4.

length for these cases, obtained from the average size
of the pair wavefunction [4], ranges from 1.3 to 1.6
lattice spacings in the range of densities shown. It
can be seen that a somewhat smaller disorder is
needed to depress the energy gap as the density in-
creases, as one would expect from the previous con-
siderations and the form of the gap function, fig. 3.
The relative depression of the energy gap decreases
as the density increases, presumably due to the in-
crease in coherence length with density.

In contrast, fig. 6 shows the effect of site disorder
for an attractive Hubbard model. As expected, site
disorder has essentially no effect in this model. Re-
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Fig. 6. Effect of on-site energy disorder in the attractive Hubbard
model. 1=0.03 eV, U=—-0.09 eV, n=0.35. T,=150 K. The co-
herence length is é=0.44 lattice spacings. The full and dashed
lines show the effect of changing one and two neighboring site
energies, as in figs. 4 and 5 respectively.

sults obtained for other densities show similar
behavior.

The behavior found in figs. 4 and 5 can also be
qualitatively understood from a strong coupling point
of view. In the strong coupling limit of this model the
single hole hopping amplitude is zero [9]. The pair
binding energy €,= — 2 u, with u the chemical poten-
tial, arises from delocalization of the pair. Consider
first the case of a potential well at a single site (zero),
with energy €, <0. The excitation energy correspond-
ing to breaking up a pair and localizing one of the
holes at sites 0 is

Eex=60_2,u=eo+ebs (21)

and it decreases linearly with increasingly negative
€. For |¢,|>¢€,/2, however, the ground state ac-
quires one extra hole localized at site zero, and the
lowest excitation energy is given by the cost in pro-
moting this hole to another site:

En=—¢,. (22)

Similarly, if there are two sites with negative site en-
ergy ¢, the difference in energy between having two
holes localized at these sites and having them paired
and delocalized is easily seen to be
Eo=|2¢,+€] . (23)

Figure 7 shows the behavior predicted by egs. (21)~
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Fig. 7. Minimum quasi-particle excitation energy in the strong
coupling limit for different site energies on one and two sites, as
given by eqs. (21)-(23), for ¢,=0.08 eV.

(23). It can be seen that it qualitatively resembles
the results found in figs. 4 and 5.

4. Tunneling density of states

In a point contact tunneling experiment one meas-
ures the local density of states. With a scanning tun-
neling microscope and a tip of atomic dimensions it
is in principle possible to obtain atomic resolution.
Thus one can sample the site density of states

pz(w)=z [Iuni lz 6(w_En)

+v,|?d(w+E,)].  (24)

We obtain an estimate of this quantity on our finite
lattice by broadening the d-functions to Lorentzians:

r
pi(w) = E Z

x[ |12, [0, 12 ] (25)

(w—E)*+TI?  (w+E,)*+T7?

Figure 8 shows the behavior of this quantity for one
case, at the impurity site and at a distant site. The
eigenvector corresponding to the lowest eigenvalue
in the BAG equations is localized around the site
where the potential is lower, and this gives rise to a
reduced gap in the local density of states in this re-
gion. Far away from the impurity site the density of
states coincides with the results obtained for a uni-
form chain, as shown in fig. 8 (although differences
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Fig. 8. Site density of states, eq. (24), in the one-dimensional
chain. n=0.32, ¢,= —0.0375, for sites i=0 (dashed line) and
i=10 (full line). The dotted line gives the results for a uniform
chain. I'=0.0032 ¢V.

appear for energies higher than shown in the figure).
The asymmetric shape of the tunneling characteris-
tics has been discussed elsewhere [4].

Figure 9 shows the local density of states at the im-
purity site for various values of the local potential,
both negative ((a)) and positive ((b)). In the case
of negative potential the tunneling gap becomes pro-
gressively smaller, as expected; in the positive case
instead the gap remains of constant size but the low
energy spectral weight at the impurity site dimin-
ishes (and is transferred to high energy structure, not
shown in fig. 9).

Calculations for other cases show similar behav-
ior. If the tip in the tunneling probe does not have
atomic dimensions one would measure an average of
eq. (24) over a finite number of sites. Still, our re-
sults illustrate that tunneling measurements at. dif-
ferent points in a sample can exhibit large variations
due to variations in the local potential energy.

We have also evaluated the tunneling density of
states for the attractive Hubbard model. Consistent
with the results for the lowest eigenvalue found in
fig. 6, the tunneling gap remains essentially un-
changed at the impurity site (there is, however, some
redistribution of the amplitude of the spectral weight
even in this case).

5. Discussion

We have considered here the effect of non-mag-
netic disorder on the quasi-particle energy gap in the

30—
25:_ f'\ -'v' ’ —:
C oy ]
s fo ]
20 Pt ]
o P ]
15 N\ b -,I l': \ 3

10F T

pilw) (states/s1te-eV)

e
15}

10}

pilw) (states/site-eV)

R N ot A N
-0.02 0 0.02
w (eV)

Fig. 9. Site density of states in the one-dimensional chain at the
impurity site for (a) negative and (b) positive potential values.
n=0.32, I'=0.0032 ¢V. In (a), the solid, dashed, dotted and dash-
dotted lines correspond to €,=0, ¢,= —0.025, ¢,= —0.0375 and
€,= —0.045 respectively. In (b), the solid, dashed and dotted lines
correspond to €,=0, ¢,=0.025 and €,=0.0375 respectively.

model of hole superconductivity. For cases where
potential fluctuations occur over distances larger than
the coherence length the effect can be simply in-
férred from the dependence of the critical temper-
ature on carrier concentration in this model [4].
More generally one may argue that the experimental
observation that T, varies strongly with carrier con-
centration [10] implies a sensitivity to potential
fluctuations that change the local carrier density. For
disorder on length scales of the order of or shorter
than the coherence length, variations in the energy
gap will occur due to the finite slope of the gap func-
tion. We studied this effect by numerical solution of
the BAG equations for a case with finite gap slope
and a case with zero gap slope (attractive Hubbard
model). In the latter no change in the energy gap oc-
curred on varying the on-site energy, while in the for-
mer the energy gap could be sharply depressed by on-
site disorder. We also calculated the local density of
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states and found that it exhibits a reduced gap in the
region of depressed local potential. THe scale of dis-
order that gives rise to variations in the energy gap
is of order Ae=n,,,,D/2 (eq. (15)). With ny,,~0.2
in high-T, oxides and bandwidth D of order 0.5 eV
or smaller, fluctuations of such magnitude are easily
generated by impurities, defects or vacancies. Ad-
ditionally, on approaching the surface of a sample
one may expect changes in the local potential energy
and hence different energy gaps from experimental
techniques that are sensitive to bulk or surface
regions.

The different sensitivity of the model of hole su-
perconductivity and the attractive Hubbard model
to site disorder can be understood as follows: in the
former the strength of the attractive interaction
(generated by Az) depends on the character of the
wavefunctions at the Fermi energy (whether bond-
ing or antibonding) [5], while in the latter it does
not. A change in on-site energies changes the strength
of the interaction in the model of hole supercon-
ductivity due to the fact that for higher (lower) on-
site energies the wavefunction at the Fermi energy
becomes more bonding (antibonding) like. For the
attractive Hubbard model a similar effect of disor-
der would be obtained by varying the local strength
of the on-site attraction U,. We have verified by nu-
merical solution of the BAG equations that indeed
such disorder in the attractive Hubbard model de-
presses the energy gap. In real materials the largest
effect of non-magnetic disorder is likely to be to
change the local potential energy rather than the
strength of any electron—electron interation; thus we
would expect real materials described by the model
of hole superconductivity to be more sensitive to non-
magnetic disorder than those described by attractive
Hubbard or similar models, particularly if the slope
of the gap function is large. Anderson’s “theorem”
{11] is not expected to hold in these non-weak-cou-
pling situations.

There is another physical argument that can be in-
voked to understand the sensitivity of the mecha-
nism of hole superconductivity to non-magnetic dis-
order: because in this model pairing originates in the
kinetic energy gained by the paired holes,local po-
tential fluctuations that tend to localize the hole
around that region are naturally pair-breaking, as they
reduce the kinetic energy. In contrast, in models
where the pairing interaction originates in potential

rather than kinetic energy such as the attractive
Hubbard model, paired carriers can spend increas-
ing time in the region of depressed local potential
without suffering a reduction in their pairing energy,
and thus such fluctvuations are not strongly pair-
breaking. This argument is only in appearance dif-
ferent from the one discussed above: the facts that in
the model of hole superconductivity pairing origi-
nates in kinetic energy gain and that the gap function
has a finite slope are intimately connected.

To conclude, one may argue that the considera-
tions in this paper lend support to the applicability
of the model of hole superconductivity to high-T ox-
ides. Observation of energy gap variations and sen-
sitivity to disorder [1-3] suggest that the gap func-
tion cannot be constant, and the possibility of higher
angular momentum pairing immediately comes to
mind; however, on the other hand various obser-
vations suggest that the superconducting state'is iso-
tropic s-wave rather than higher angular momentum
[12]. These combined observations thus suggest that
the gap function varies in directions perpendicular
to constant energy surfaces and is constant on con-
stant energy surfaces, as described by the model of
hole superconductivity (eq. (10b)). Of course there
could be other models that exhibit similar properties.
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